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Prediction of information value influences memory: the effect of predicted and 
assigned value on memory
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ABSTRACT  
We tend to prioritise more valuable information at the expense of less valuable information to 
optimise the use of our limited memory capacity. Participants better remember information 
that they judge to be valuable and that they are told is valuable. Using a recognition 
paradigm, we sought to examine whether predicting the value of art pieces before learning 
the experimenter assigned value would influence memory and the quality of retrieval. In 
two experiments, participants made value predictions about various art pieces and then 
learned the assigned value. At test, participants provided old/new and remember/know 
judgments and were tested on the exact value. Results revealed that participants’ value 
predictions influenced memory to a greater degree than assigned value, despite assigned 
value indicating the amount of reward participants would receive. We discuss these findings 
with regard to strategic and automatic influences of value on memory, as well as in the 
context of reward prediction errors (a difference in expected and actual reward).
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We are often exposed to substantially more information 
than we can remember. With our limited memory capacity, 
being able to prioritise which information to remember is 
especially important in helping us navigate our lives. For 
example, we may want to remember the birthdays of 
people we care about or which foods a child is allergic 
to. It is also advantageous to predict which information 
will be most valuable. For example, students often try to 
predict which information will be tested to direct cognitive 
resources accordingly. With these goals, we often aim to 
remember the most important information, including 
that which we predict to be important. However, our pre
dictions are not always aligned with information’s real or 
external value. Understanding how our predictions of 
value and later learned value influence memory can help 
illuminate how successfully we update memory for value 
information and how value influences memory when it 
aligns with expectations or does not. In the present 
research, we examine the influence of participants’ predic
tions of a stimulus’ value (referred to here as “predicted 
value”) and the stimulus’ experimenter-assigned value 
(referred to here as “assigned value”) on recognition 
memory.

Castel (2007) proposed the value-directed remember
ing (VDR) framework which posits that memory is selective 
for information of high value. In studies of VDR, a point 

value or monetary reward is paired with a word or other 
stimulus, and participants are asked to remember the 
stimulus for a later test with a goal of maximising their 
score. Because most people cannot remember all the 
items presented, participants generally learn, with task 
experience and feedback, to remember high-value infor
mation at the expense of low-value information (Castel 
et al., 2002; Middlebrooks et al., 2017; Robison & Unsworth, 
2017; Spaniol et al., 2014). Some work has expanded these 
findings to examine whether value has a similar influence 
on memory when it is subjectively assigned by participants 
(McGillivray & Castel, 2017; Murphy & Castel, 2021) and has 
found that participants’ subjective judgments of value also 
drive memory, similar to experimenter assigned value.

There is evidence of both automatic and strategic influ
ences of value on memory (see Knowlton & Castel, 2022 for 
a review). Value and reward are closely associated with the 
brain’s dopaminergic pathways such that value drives 
both automatic and strategic memory processes. There is 
neuroscientific and behavioural data suggesting that 
reward has a more automatic influence on memory. 
High-value information is generally more salient and 
often processed more automatically with less cognitive 
effort (Adcock et al., 2006; Wittmann et al., 2005; Wolosin 
et al., 2012). Additionally, the processing of high value 
information tends to rely more on the hippocampus 
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(Gruber et al., 2016; Moscovitch et al., 2016), and connec
tivity between dopaminergic and medial temporal lobe 
structures is predictive of enhanced episodic memory 
(Adcock et al., 2006; Elliott et al., 2022). In behavioural para
digms, presenting an unexpected reward has been shown 
to improve incidental memory for information presented 
close in time to the reward (Murayama & Kitagami, 2014) 
and source memory for items associated with reward or 
punishment (Shigemune et al., 2014). Additionally, when 
using a directed-forgetting paradigm, high-value items 
that were to-be-forgotten are recognised at a much 
greater rate than low-value to-be-forgotten items (Hen
nessee et al., 2019), suggesting that value or reward can 
enhance memory even without intention to encode infor
mation in a more automatic way.

There is also evidence that we strategically attend to 
and remember high-value information by engaging in 
encoding strategies that allow for deeper semantic proces
sing of this information (Cohen et al., 2017). As such, we 
encode high-value information more effectively and 
retrieve it from memory more easily at the expense of 
lower-value information. Neural evidence supports this 
finding, showing differential engagement of semantic pro
cessing regions (left inferior frontal gyrus and posterior 
middle temporal gyrus) when high compared to low 
value information is presented (Cohen et al., 2014). Prior 
work has also shown that memory recall output tends to 
begin with high-value stimuli followed by low-value 
stimuli (Murphy et al., 2021; Murphy & Castel, 2022; Stefa
nidi et al., 2018), suggesting that participants are strategi
cally prioritising high value information in memory. Taken 
together, value or reward can improve memory through 
both automatic and strategic processes, and the extent 
to which these processes influence memory may vary 
depending on task demands and participant expectations.

One methodological way to examine both strategic and 
more automatic effects of value on memory is by using a 
recognition paradigm. Studies on VDR have largely 
focused on memory recall (see Elliott et al., 2020; Elliott 
& Brewer, 2019; Hennessee et al., 2019 for exceptions), 
which tends to allow for more episodic and strategic retrie
val of information. However, recall-based designs do not 
provide much insight into the quality of memory retrieval. 
Recognition paradigms allow us to separate fine-grained 
recollection processes from more familiarity-based 
memory (see Yonelinas, 2002; Yonelinas et al., 2010 for 
detailed discussion of recollection and familiarity). Recol
lection is facilitated by elaborative rehearsal and the episo
dic memory system and is typically associated with 
memory for contextual details (Dudukovic & Knowlton, 
2006; Gardiner et al., 1994). Familiarity involves partici
pants being fairly confident in having seen the item but 
unable to recall any other details associated with seeing 
it and is influenced by maintenance rehearsal, relying 
more on the semantic memory system (Gardiner, 1988).

In VDR studies using a recognition paradigm, results 
have shown that higher value items may be remembered 

largely through recollection processes (Elliott et al., 2020; 
Hennessee et al., 2017), and this improvement is thought 
to be a result of more automatic processes. However, 
when there is opportunity for retrieval via recall and par
ticipants receive feedback on their performance, partici
pants tend to strategically prioritise the high value 
information, resulting in both greater recollection and 
familiarity for high value information (Cohen et al., 2017). 
The differences observed between recollection and famili
arity suggest that when the goal is to improve score, which 
often involves inhibiting lower value information, more 
strategic processes may be at play. Thus, it is important 
to examine recognition across multiple study-test lists 
with feedback to examine how value affects recollection 
and familiarity when strategic processes may be at play.

Beyond effects of assigned value on memory, it is 
important to examine how predicted and assigned value 
may differentially influence memory. Specifically, making 
predictions about value and then learning an assigned 
value requires updating memory rather than simply learn
ing an assigned value. Reward prediction errors (RPEs) 
refer specifically to the mismatch between predicted 
value and assigned value, and they can either be positive 
(i.e., the reward is higher than predicted) or negative (i.e., 
the reward is lower than predicted). With RPEs, there is 
an element of surprise that is thought to elicit hippocam
pal activity which serves to update and reconsolidate 
memories (Fernández et al., 2016; Haeuser & Kray, 2023; 
Sinclair et al., 2021; Sinclair & Barense, 2019), but the litera
ture regarding the effect of RPEs on memory is mixed (see 
Ergo et al., 2020 for a review).

Specifically, some work has shown a signed effect of 
RPEs on memory, such that rewards that are higher than 
predicted are better remembered, while rewards that are 
lower than expected are remembered at lower rates (De 
Loof et al., 2018; Ergo et al., 2021; Jang et al., 2019). This 
finding is perhaps a more intuitive one, as it should be 
advantageous to remember information associated with 
higher reward (Schultz, 2017), and the increase in dopa
mine release from the midbrain following better-than-pre
dicted rewards prioritises the encoding and retrieval of 
such information (Montague et al., 1996). However, other 
work has found evidence for an unsigned or more general
ised effect of RPEs, such that rewards that are either higher 
or lower than expected result in better memory (Rouhani 
et al., 2018). As with VDR effects, the dopaminergic 
system is thought to play a role in a more generalised pre
diction error, such that this system may be sensitive to 
important cues (Bromberg-Martin et al., 2010; Gardner 
et al., 2018; Schultz, 2016). In addition, unexpected out
comes may have an element of surprise that causes 
them to be more memorable (Greve et al., 2017; Pearce 
& Hall, 1980; see Rouhani & Niv, 2021 for a discussion).

A few studies have sought to reconcile these seemingly 
disparate findings. Specifically, Stanek et al. (2019) show 
that during reward anticipation, greater expected value is 
associated with improved memory, while greater reward 
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uncertainty experienced closer to the reward outcome, or 
when the actual reward is revealed, is related to better 
memory (i.e., an unsigned effect). Additionally, Rouhani 
and Niv (2021) showed that RPEs at reward outcome 
impact memory in an unsigned manner, while RPEs 
during reward anticipation (i.e., at cue) show a signed 
effect on memory. However, due to methodological differ
ences in prior studies that highlight this difference in 
timing of RPEs and their subsequent effects on memory, 
the evidence is not entirely conclusive. Given that RPEs 
that occur at the reward outcome stage have been 
shown to elicit unsigned effects on memory, we expected 
to find unsigned effects on overall recognition memory in 
the current study. However, we were also curious about 
whether the valence of RPEs would be differentially 
related to recollection and familiarity processes, which 
has not been examined to our knowledge.

Current study

The purpose of this study was to investigate the unique 
effects of predicted value and experimenter assigned 
value, as well as the effect of reward prediction errors, 
on recognition memory, including the quality of recog
nition memory. In two experiments, participants viewed 
three lists of art and were asked to predict the value of 
the art before being shown the experimenter assigned 
value of the art pieces. Then participants were tested on 
their memory for the art as well as the associated values. 
Participants completed three study-test lists, after each 
of which they received feedback about the number of 
points they earned. This inclusion of multiple lists 
allowed us to assess the extent to which effects of 
different forms of value may change with task experience.

Consistent with the value-directed remembering frame
work, we predicted that the assigned value of art would 
have a significant effect on memory, such that higher 
value items would be better recognised and result in 
higher rates of recollective experiences than lower value 
items as shown in prior work (Hennessee et al., 2017). 
Additionally, prior work has shown that memory is 
improved for items judged to be of higher value by partici
pants (Murphy et al., 2024; Murphy & Castel, 2021), so it is 
possible that art predicted to be of higher value results in 
better recognition than that predicted to be of lower 
value. However, in the present research, participants are 
rewarded for the assigned value only (i.e., regardless of 
their predicted value), so participants should optimally 
overwrite their value predictions and focus on the 
assigned value.

There were competing hypotheses regarding the differ
ential influence of predicted and assigned value on recog
nition memory. If value is processed somewhat 
automatically (see Murphy et al., 2025), then the initial pre
diction of value may be difficult to update when learning 
the assigned value, leading to a stronger effect of pre
dicted value on overall recognition. This theory would 

also suggest that both forms of value would show influ
ences on recollection but not familiarity. On the other 
hand, if more strategic processes are at play, participants 
should be more likely to successfully ignore their predic
tions of value and prioritise items high in assigned value, 
and rates of both recollection and familiarity would be 
increased by value. Additionally, the increase of both recol
lection and familiarity as a function of value should 
become more pronounced across lists, as participants 
adjust their strategies to improve their point score.

In terms of prediction errors, we hypothesised that 
reward prediction errors (items with high predicted value 
and low assigned value, and items with low predicted 
value and high assigned value) would lead to better 
memory performance than when there is no prediction 
error (i.e., the predicted value matches the assigned 
value). Although conflicting results have been found 
regarding the effect of RPEs on memory, we predict an 
unsigned effect, as the prediction error should take place 
at the reward outcome stage, rather than the reward 
anticipation stage of encoding.

Experiment 1

In Experiment 1, participants viewed three lists of various 
art pieces, including sculptures, paintings, and photo
graphs. After viewing each image, participants judged 
the value of each art piece before being shown the 
assigned value, which was what they were told they 
would earn if they correctly remembered the art piece 
later. During testing, participants were shown the art 
pieces they had studied, as well as lures they had not 
studied (by the same artists), and were asked to make 
old/new and remember/know/guess judgments. Finally, 
participants were given feedback about their performance. 
We examined their overall recognition memory, remem
ber/know responses, memory for the price of items, and 
reward prediction errors. We also examined participants’ 
confidence in their memory performance, which is 
reported in the Supplementary Results.

Method

Participants
A total of 110 participants took part in the research study 
online. We excluded 11 participants from our analysis due 
to the proportion of New responses being greater than 
75% of all test items, which suggests that the participants 
were not following study instructions and/or were not fully 
engaged in our study as selecting “New” would allow them 
to complete the study faster. We also excluded four partici
pants whose reported age was under 18 or greater than 
30. Therefore, our final sample consisted of 95 participants, 
with 75 females, 19 males, and one participant who did not 
identify as either gender. The participants ranged in age 
from 18 to 29 years (M = 19.96, SD = 1.81). The sample con
sisted of University of California, Los Angeles (UCLA) 
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undergraduate students recruited from the UCLA psychol
ogy subject pool. Participants earned coursework credit or 
extra credit as part of their participation. The study was 
approved by UCLA’s Institutional Review Board (#12- 
000617), and informed consent was obtained. We did 
not have an initial sampling plan, but a post-hoc sensitivity 
analysis revealed that for a within-subjects ANOVA with 95 
participants and power of .80, we could detect small effect 
sizes of Cohen’s f = 0.086.

Materials
Stimuli consisted of 180 art pieces taken from online art 
marketplaces, and the art pieces included paintings, 
photographs, and sculptures. Art pieces were taken from 
90 artists, with two art pieces per artist. One art piece 
from each artist was presented during the study phase 
and the other served as a lure during the test phase. All 
art pieces were presented on a blank white computer 
screen and were standardised in size to a height of 350 
pixels, regardless of shape.

In order to determine the range for low values and high 
values, 47 independent participants rated values from 
$1000 to $950,000 as low or high. Based on these 
responses, we made the range for low value to be 
between $1000 and $25,000, and high value to be 
between $100,000 and $500,000. A set of 30 unique 
values with 15 low values and 15 high values was gener
ated from these ranges. These unique price values were 
randomly paired with 30 art pieces during the study 
phase for each list as the experimenter assigned value. In 
other words, these price values were not the actual value 
of the art pieces, but rather, they were simply randomly 
assigned values that participants were led to believe 
were the actual value of the art pieces.

Procedure
After providing informed consent and basic demographic 
information, participants were given the following cover 
story and instructions. They were told that their client, 
who is an art collector, is interested in obtaining high 
value art pieces. Participants were instructed that they 
would be shown various art pieces that would differ in 
value, and their goal was to remember as many valuable 
art pieces as possible. Then, during the study phase, par
ticipants were shown an art piece for 6 s. They were 
asked to select whether they thought the art was low- 
value (between $1000 and $25,000) or high-value 
(between $100,000 and $500,000). After making a selec
tion, participants were shown the art piece again, along 
with the experimenter assigned value of the art piece for 
6 s, which was randomly selected from the set of 30 
unique price values. This process was repeated for 30 
items, and the order in which the art pieces were pre
sented was random. After completing the study phase, 
participants were then instructed to complete simple 
arithmetic problems for two minutes.

Next, participants were presented with the instructions 
for the test phase, which gave them the definitions of the 
terms old, new, remember, know, and guess. Old responses 
indicated that the participant had seen the item during 
study, whereas new responses indicated that the partici
pant had not seen the item during study. Additionally, if 
participants said the item was old, they were asked to 
make the Remember/Know/Guess (RKG) judgment. A 
remember response indicates a recollection experience; a 
know response indicates a familiarity experience; a guess 
response indicates that the participant was simply gues
sing (see Appendix A for the exact definitions shown to 
participants). Participants were then presented, in a 
random order, with each of the 30 items they had 
studied, as well as 30 lure items they had not studied. 
When each item was presented, participants were asked 
to rate the art piece as definitely old, probably old, 
maybe old, definitely new, probably new, or maybe new. 
If the art piece was rated as old, participants were then 
prompted to identify the basis of their recognition 
(remember, know, or guess), then to free recall the exper
imenter assigned value of the art, and then to rate their 
confidence in their memory of the value on a 7-point 
Likert scale (1 = not at all confident, 7 = very confident). If 
the art piece was rated as new, participants then pro
ceeded to the next art piece without being prompted for 
additional information.

At the end of the test phase, participants received feed
back on how much the items that they correctly remem
bered were worth out of the total amount possible. For 
example, assume that both art pieces A (worth $6000) 
and B (worth $100,000) were presented in the study 
phase. If the participant correctly recognised art piece A 
as old but incorrectly judged art piece B as new, then 
they would receive feedback that they remembered 
items worth $6000 out of the total $160,000 item value 
they could have remembered. It is important to note 
that while participants were only awarded points for hits 
but not correct rejections, we did not specify this in the 
task instructions to ensure that participants were not 
incentivized to respond “old” on all trials. Rather, partici
pants were simply told in the instructions that they 
would earn the value of the art pieces if they correctly 
recognized the items by selecting “old” when the art 
pieces had truly been previously shown or by selecting 
“new” when the art pieces had truly not been previously 
shown. Following the feedback, participants repeated 
this process for the next list. There were three study-test 
lists, each with 30 art pieces presented in the study list 
and 60 in the test list. The order of the lists were counter
balanced for each participant. A summary of the study pro
cedure is depicted in Figure 1.

Data analysis
Overall recognition accuracy refers to how accurate partici
pants were at categorising the items correctly as either old 
or new (i.e., when they correctly identified previously 
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studied items as old or new items as new). As the lure/new 
items did not have either a predicted or assigned value, we 
did not include false alarms in our overall recognition cal
culation. Additionally, analyses regarding remember and 
know responses include only items that were judged as 
old (as participants did not make the RKG judgment for 
items they remembered as new) and items that were actu
ally old (as there was no predicted or assigned value for 
new items). Thus, the analyses for these variables include 
only items that were correctly remembered as old (i.e., 
hits).

Memory of assigned value refers to how well participants 
were able to recall the experimenter assigned value. Partici
pants correctly recalled the assigned value when partici
pants’ memory for the numeric value at test matched the 
correct category of assigned value (i.e., when they provided 
a value within the Low Value range when the assigned 
value was low, or when they provided a value within the 
High Value range when the assigned value was high). We 
used a categorical measure, as overall accuracy of the 
exact assigned value was low (M = 0.21).

To examine overall recognition accuracy, remember 
and know responses, and memory of assigned value, we 
conducted a logistic mixed effects model with items 

nested within individuals. We used this analysis approach 
to account for variance at both the item and participant 
level. We included both participant and item as random 
intercepts. We tested the models for the inclusion of a 
random slope for predicted value, as this variable could 
vary across items, but model comparison metrics 
suggested the fit was not significantly improved by the 
inclusion of this parameter, and thus a more simple 
model was preferred. Because participants were able to 
predict the value of each item, including the item as a 
random intercept allows item effects to be accounted for. 
Predicted value (simple coded, anchored on low), assigned 
value (simple coded, anchored on low), list (simple coded, 
anchored on List 1), and their interactions served as fixed 
effects in the model predicting item-level outcomes, includ
ing recognition accuracy, remember responses, know 
responses, and memory for the value category. Random 
intercepts for participant and item were included to 
control for their individual effects, and the intraclass corre
lation coefficient (ICC) is reported for each model. Bonfer
roni corrections were used for post-hoc tests.

To test whether the types of prediction error had a 
different effect on memory, prediction errors were cate
gorised into three groups: (1) when the predicted value 

Figure 1. A summary of the study procedure in Experiment 1.
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was higher than the assigned value (a negative RPE), (2) 
when the predicted value was lower than the assigned 
value (a positive RPE), and (3) when there was no predic
tion error (the predicted value matched the category of 
the assigned value; no RPE). We used a Generalized 
Mixed Model with binomial distribution and a log link 
function (logistic mixed effects regression) to examine 
the effects of prediction error and list on recognition 
accuracy. Similarly, random intercepts for participant 
and item effects were included to account for their varia
bility. Bonferroni corrections were used for post-hoc 
tests.

Results

Overall recognition accuracy
There were 45.8% of Old responses and 54.2% of New 
responses collapsed across all participants and items pre
sented. Overall recognition accuracy was 85.31%, while 
the false alarm rate was 7.10%. Average recognition accu
racy is shown in Figure 2A, and all recognition accuracy 
means and standard deviations are reported in Table 1. 
Additionally, the proportion of items predicted to be low 
value was 49.42%, while 50.58% of items were predicted 
to be of high value. Cell sizes broken down across all vari
ables are presented in Table 1.

Figure 2. Recognition memory performance in Experiments 1 and 2.
Notes: Panel A shows the average recognition memory performance for each condition in Experiment 1. Panel B shows the average recognition memory performance for each 
condition in Experiment 2. Error bars represent ±1 standard error of the mean.

Table 1. Mean (and standard deviation) of overall recognition accuracy, remember responses, and know responses.

Experiment 1

Assigned Value

List 1 List 2 List 3

Low High Low High Low High

Low Predicted
Overall 0.86 (0.34) 0.88 (0.32) 0.81 (0.39) 0.85 (0.36) 0.77 (0.42) 0.84 (0.37)
Remember 0.69 (0.46) 0.74 (0.44) 0.76 (0.43) 0.78 (0.42) 0.76 (0.43) 0.80 (0.40)
Know 0.25 (0.44) 0.21 (0.41) 0.18 (0.38) 0.17 (0.38) 0.19 (0.40) 0.16 (0.37)
n 713 706 695 699 710 702

High Predicted
Overall 0.88 (0.32) 0.86 (0.34) 0.82 (0.38) 0.84 (0.37) 0.82 (0.39) 0.82 (0.39)
Remember 0.69 (0.46) 0.71 (0.45) 0.76 (0.43) 0.75 (0.44) 0.76 (0.43) 0.79 (0.41)
Know 0.25 (0.43) 0.25 (0.43) 0.19 (0.40) 0.20 (0.40) 0.20 (0.40) 0.18 (0.38)
n 712 719 720 726 715 723 

Experiment 2

Assigned Value

List 1 List 2 List 3

Low High Low High Low High

Low Predicted
Overall 0.71 (0.46) 0.72 (0.45) 0.76 (0.43) 0.75 (0.43) 0.72 (0.45) 0.78 (0.42)
Remember 0.55 (0.50) 0.51 (0.50) 0.57 (0.50) 0.62 (0.49) 0.57 (0.50) 0.65 (0.48)
Know 0.25 (0.43) 0.30 (0.46) 0.25 (0.43) 0.24 (0.43) 0.25 (0.44) 0.23 (0.42)
n 583 581 592 574 557 548

High Predicted
Overall 0.71 (0.45) 0.74 (0.44) 0.77 (0.42) 0.77 (0.42) 0.78 (0.41) 0.79 (0.41)
Remember 0.52 (0.50) 0.55 (0.50) 0.61 (0.49) 0.61 (0.49) 0.68 (0.47) 0.68 (0.47)
Know 0.31 (0.46) 0.29 (0.46) 0.25 (0.43) 0.25 (0.43) 0.21 (0.41) 0.21 (0.40)
n 687 686 678 700 704 721

Notes: “Overall” refers to overall recognition accuracy. “Remember” refers to remember responses for correctly recognised old items. “Know” refers to know 
responses for correctly recognised old items.
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For overall recognition accuracy, the ICC for the partici
pant random intercept effect was 0.38 and for the item 
random intercept effect was 0.17. Assigned value (OR =  
1.24, SE = 0.07, 95% CI: 1.08–1.41, z = 3.11, p = .002) was a 
significant predictor of recognition accuracy. Items with 
high assigned value had greater recognition accuracy 
compared to items with low assigned value. Predicted 
value (OR = 1.20, SE = 0.07, 95% CI: 1.05–1.38, z = 2.58, p  
= .01) was also a significant predictor of recognition accu
racy such that items with high predicted value had greater 
recognition accuracy compared to items with low pre
dicted value. Furthermore, the overall effect of list, X2(2)  
= 52.60, p < .001, significantly predicted recognition accu
racy, such that more items were correctly remembered 
on List 1 than List 2 (OR = 1.53, SE = 0.13, z = 5.02, p  
< .001), and than items on List 3 (OR = 1.82, SE = 0.15, z =  
7.15, p < .001), but recognition accuracy did not 
differ between List 2 and List 3 (OR = 1.19, SE = 0.09, z =  
2.20, p = .08).

Additionally, there was a significant interaction 
between predicted value and assigned value (OR = 0.67, 
SE = 0.14, 95% CI: 0.51–0.87, z = −2.98, p = .003). Bonfer
roni-corrected post-hoc tests showed that when predicted 
value was low, items with high assigned value had greater 
recognition accuracy compared to items with low assigned 
value (OR = 0.66, SE = 0.06, z = −4.29, p < .001). However, 
when predicted value was high, there was no difference 
in recognition between high and low assigned value 
items (OR = 0.99, SE = 0.10, z = −0.09, p > .99). Additionally, 
items with higher predicted and assigned value had 
greater recognition accuracy compared to items with 
low predicted and assigned value (OR = 0.67, SE = 0.06, z  
= −4.11, p < .001). No other interactions were significant 
(all ps > .265).

As a sidenote, recognition confidence was not a main 
variable of interest in this study and thus is not reported 
in the paper. However, we have included the results in 
the Supplemental Material with means and standard devi
ations reported in Table S1.

Remember-know responses
The average proportion of remember responses is shown 
in Figure 3A, and all means and standard deviations are 
reported in Table 1.

For remember responses, the ICC for the participant 
random intercept effect was 0.51 and for the item random 
intercept effect was 0.12. The results showed that assigned 
value was a significant predictor of remember responses 
(OR = 1.27, SE = 0.07, 95% CI: 1.11–1.46, z = 3.47, p < .001), 
such that items with high assigned value had greater likeli
hood of receiving a remember response compared to 
items with low assigned value. List was also a significant pre
dictor, X2(2) = 31.69, p < .001. Items on List 2 (OR = 0.75, SE =  
0.06, z = −3.48, p = .002) and List 3 (OR = 0.63, SE = 0.05, z =  
−5.52, p < .001) had greater likelihood of remember 
responses compared to List 1, but there were no significant 
differences between List 2 and List 3 (OR = 0.84, SE = 0.07, 
z = −2.04, p = .124). Predicted value was not a significant pre
dictor (OR = 1.04, SE = 0.07, 95% CI: 0.90–1.20, z = 0.55, p  
= .584). Analyses also showed no significant interaction 
between predicted value and assigned value (OR = 0.88, SE  
= 0.14, 95% CI: 0.67–1.15, z = −0.92, p = .356). Other higher- 
order interactions did not yield any significant differences 
(all ps > .153).

The average proportion of know responses is shown in 
Figure 4A. Means and standard deviations of the pro
portion of know responses are included in Table 1. The 
proportion of remember and know responses were not 
perfectly proportional because of the inclusion of the 
“Guess” response, so we examine the two outcomes 
separately. The ICC for the participant random intercept 
effect was 0.47 and was 0.06 for the item random intercept 
effect. Results showed that assigned value was a signifi
cant predictor (OR = 0.83, SE = 0.07, 95% CI: 0.72–0.96, z  
= −2.61, p = .009), such that items with low assigned 
value had greater likelihood of receiving a know response 
compared to items with high assigned value. List was a sig
nificant predictor as well, X2(2) = 33.54, p < .001. The likeli
hood of know responses were greater in List 1 than List 2 

Figure 3. Likelihood of remember responses in Experiments 1 and 2.
Notes: The average likelihood of remember responses is shown for low and high predicted and assigned value in Experiment 1 (Panel A) and Experiment 2 (Panel B). Error bars 
represent ±1 standard error of the mean.
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(OR = 1.44, SE = 0.12, z = 4.32, p < .001) and List 3 (OR =  
1.59, SE = 0.14, z = 5.36, p < .001), but there was no signifi
cant difference between List 2 and List 3 (OR = 1.10, SE =  
0.10, z = 1.06, p = .873). Predicted value was not a signifi
cant predictor of remember responses (OR = 1.03, SE =  
0.07, 95% CI: 0.89–1.19, z = 0.39, p = .698), and no inter
actions in the model were significant (all ps > .319).

Memory of assigned value
Overall accuracy for the exact value was low (M = 0.21), so 

memory of assigned value was coded categorically as 
whether the recalled value was within the correct range. 
Means and standard deviations are reported in Table 2.

For the likelihood of correct memory of each item’s 
assigned value, the ICC for the participant random inter
cept effect was 0.12 and was 0.07 for the item random 
intercept effect. Assigned value was a significant predictor 
of memory for the value category (OR = 1.36, SE = 0.07, 
95% CI: 1.19–1.55, z = 4.45, p < .001), such that memory 
accuracy was greater for items with higher assigned 
value than items with lower assigned value. List was also 
a significant predictor, X2(2) = 7.41, p = .025. Items on List 
1 had higher memory accuracy compared to items on 
List 3 (OR = 1.22, SE = 0.10, z = 2.40, p = .05), but there 

were no differences between List 1 and List 2 (OR = 1.22, 
SE = 0.10, z = 2.33, p = .06), and between List 2 and List 3 
(OR = 1.01, SE = 0.08, z = 0.08, p > .99). Predicted value 
was not a significant predictor of value memory (OR =  
0.97, SE = 0.07, 95% CI: 0.84–1.12, z = −0.43, p = .668). 
Higher-order interactions did not yield any significant 
differences (all ps > .116).

Confidence in assigned value is not reported here as it 
was not a primary variable of interest, but we have 
included the results in the Supplemental Material with 
means and standard deviations reported in Table S2.

Reward prediction errors
Next, looking at the likelihood of correct recognition accu
racy as a function of reward prediction error and list, the 
ICC for the participant random intercept effect was 0.38, 
and the ICC for the item random intercept effect was 0.17. 
The model revealed that type of prediction error, X2(2) =  
8.99, p = .01, significantly predicted recognition accuracy. 
Specifically, items with positive RPEs had greater recog
nition accuracy compared to items with no RPEs (OR =  
0.80, SE = 0.07, z = −2.65, p = .024). Items with negative 
RPEs also had greater recognition accuracy compared to 
items with no RPEs, OR = 0.84, SE = 0.07, z = 2.12, but this 

Figure 4. Likelihood of know responses in Experiments 1 and 2.
Notes: The average likelihood of know responses is shown for low and high predicted and assigned value in Experiment 1 (Panel A) and Experiment 2 (Panel B). Error bars 
represent ±1 standard error of the mean.

Table 2. Mean (and standard deviation) of categorical price memory.

Experiment 1

Assigned Value

List 1 List 2 List 3

Low High Low High Low High

Low Predicted 0.87 (0.34) 0.85 (0.36) 0.83 (0.37) 0.87 (0.34) 0.80 (0.40) 0.86 (0.35)
High Predicted 0.82 (0.39) 0.88 (0.33) 0.81 (0.39) 0.83 (0.37) 0.80 (0.40) 0.87 (0.33) 

Experiment 2

Assigned Value

List 1 List 2 List 3

Low High Low High Low High
Low Predicted 0.68 (0.47) 0.53 (0.50) 0.65 (0.48) 0.63 (0.48) 0.67 (0.47) 0.63 (0.48)
High Predicted 0.62 (0.49) 0.66 (0.47) 0.61 (0.49) 0.68 (0.47) 0.57 (0.50) 0.72 (0.45)
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finding was not significant when accounting for multiple 
comparisons, p = .102. There was no difference in recog
nition accuracy between items with positive RPEs and nega
tive RPEs, OR = 1.05, SE = 0.11, z = 0.50, p > .999 (see Figure 
5A).

Furthermore, list was a significant predictor of recog
nition accuracy, X2(2) = 46.33, p < .001. There was greater 
recognition accuracy in List 1 compared to List 2 (OR =  
1.57, SE = 0.14, z = 4.98, p < .001) and List 3 (OR = 1.82, SE  
= 0.16, z = 6.64, p < .001). Recognition accuracy did not 
differ between List 2 and List 3 (OR = 1.16, SE = 0.10, z =  
1.74, p = .245). The interaction between list and RPE was 
not significant, X2(4) = 2.10, p = .718.

RPEs and remember and know responses
We next examined remember and know responses as a 
function of RPEs and List, and the ICC for the remember 
analysis was 0.51 for the participant random intercept 
effect and was 0.11 for the item random intercept effect. 
The results of the model showed a significant effect of list 
on remember responses, X2(2) = 29.37, p < .001, which 
matched the effect of list on remember responses reported 
earlier. The effect of prediction error was marginally signifi
cant, X2(2) = 5.28, p = .071, such that positive prediction 
errors resulted in slightly greater likelihood of remember 
responses than no PE (OR = 1.18, SE = 0.09, z = 1.95, p  
= .051), while there was no difference between negative 
PEs and no PEs (OR = 0.95, SE = 0.08, z = −0.55, p = .583).

Looking next at know responses, the ICC for the partici
pant random intercept effect was 0.47, while for the item 
random intercept effect, it was 0.06. The results showed 
a significant effect of list on know responses, X2(2) =  
29.22, p < .001, matching that described earlier. The 
effect of prediction error was marginally significant, X2(2)  
= 4.97, p = .083. Positive PEs resulted in somewhat fewer 
know responses (OR = 0.86, SE = 0.09, z = −1.34, p = .082), 
while there was no difference in negative PEs and no PE 
(OR = 1.07, SE = 0.09, z = 0.78, p = .438). The interaction 
between list and RPE was not significant, X2(4) = 3.18, p  
= .529.

Discussion

In Experiment 1, we found that recognition memory was 
higher for items that participants predicted to be of high 
value, and that participants did not “overcome” this 
initial value judgment to successfully update their 
memory with the assigned value unless the predicted 
value was initially low. In other words, the results 
suggest that either form of value (predicted or assigned) 
being high resulted in better recognition memory. 
Further, we found evidence that high assigned value led 
to more recollection experiences and fewer familiarity 
experiences.

Experiment 1 also revealed that the type of prediction 
error may influence recognition memory. Specifically, par
ticipants showed better recognition memory for predic
tion errors that were positive (i.e., had a higher assigned 
value than the initial predicted value) and negative (i.e., 
had a lower assigned value than the initial predicted 
value) compared to when there was no prediction error, 
however the latter did not reach statistical significance 
when accounting for multiple comparisons. This finding 
suggests that any difference between expected and 
assigned value may improve memory performance, poss
ibly through more surprise mechanisms than a focus on 
the ultimate achieved value.

However, in Experiment 1, recognition rates were 
overall fairly high and rates of false alarms were low. There
fore, some of our effects (or lack of effects) may have been 
influenced by a possible ceiling effect. Thus, in Experiment 
2, we sought to address the rates of recognition and false 
alarms.

Experiment 2

In Experiment 2, we sought to replicate our findings from 
Experiment 1 and to lower the overall recognition rate, as 
it was fairly high in Experiment 1. One possibility for why 
recognition rates were high in Experiment 1 was that the 
stimuli were highly diverse and unique, which could 
have reduced pressure to prioritise some information in 

Figure 5. Recognition accuracy across different types of reward prediction error.
Notes: The recognition accuracy is shown for different types of reward prediction error (negative, none, positive) in Experiment 1 (Panel A) and Experiment 2 (Panel B). Error bars 
represent ±1 standard error of the mean.
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memory and made recollection rates higher. In order to 
address this issue, we decided to use the stimuli from 
Kornell and Bjork (2008), which showed participants land
scape paintings from 12 artists. Because these works are 
more similar overall (i.e., all being paintings and depicting 
landscapes) and there were multiple examples from each 
artist, which should introduce more potential interference, 
we expected recognition rates and recollection rates to be 
reduced. The procedure was otherwise the same as Exper
iment 1, and we again examined overall recognition accu
racy, remember/know responses, memory for the value, 
and reward prediction errors as a function of participants’ 
value predictions, assigned value, and list. We also exam
ined confidence ratings, which are included in the Sup
plementary Materials.

Method

Participants
Following Experiment 1, we conducted an a priori power 
analysis for Experiment 2 using the effect size for the inter
action between predicted and assigned value. The power 
analysis, using G*Power (Faul et al., 2007), for a within-sub
jects ANOVA with effect size, f, of 0.14 showed that we 
needed a sample size of 109. Because of the number of 
exclusions in Experiment 1, we overrecruited. A total of 
138 undergraduate students recruited from the UCLA psy
chology subject pool took part in Experiment 2, with 86 
females, 22 males, and one participant who did not ident
ify as either gender. Of these 138, six were excluded for not 
being within the 18–30 year age range, and three were 
excluded for responding “new” during the recognition 
test more than 75% of the time or less than 25% of the 
time. The final sample thus consisted of 129 participants. 
Participants ranged in age from 18 to 30 years (M =  
20.19, SD = 1.52). Participants earned coursework credit 
or extra credit as part of their participation. This study 
was approved by the IRB, and informed consent was 
obtained.

Materials
Stimuli consisted of 120 landscape and skyscape paintings, 
with 10 paintings from each of the following 12 artists: 
Georges Braque, Henri-Edmond Cross, Judy Hawkins, 
Philip Juras, Ryan Lewis, Marilyn Mylrea, Bruno Pessani, 
Ron Schlorff, Georges Seurat, Ciprian Stratulat, George 
Wexler, and YieMei. These stimuli were taken from 
Kornell and Bjork (2008) and have been shown to elicit 
reasonable recognition rates. In our study, five paintings 
from each artist were presented during the study phase, 
and the other five served as lures during the test phase, 
and the set of five paintings that was presented during 
the study phase versus the test phase was counterba
lanced across participants. As in Experiment 1, all paintings 
were presented on a blank white computer screen and 
were standardised in size to a height of 350 pixels, regard
less of shape. The price range for low art values and high 

art values were also similar to that of Experiment 1. Two 
paintings were excluded from analysis due to exper
imenter error, as one was mistakenly presented twice 
and the other not presented at all.

Procedure
Study procedures were similar to that of Experiment 1 
except for the following changes. First, there were 60 
paintings presented in the study phase and 120 paintings 
(60 previously studied items and 60 lure items) in the test 
phase. This was due to prior studies only having 120 
stimuli available (Kornell & Bjork, 2008). Additionally, 
after participants made a selection on whether they 
think the painting was of low-value or high-value during 
the study phase, rather than showing the painting again 
along with the true selling price, participants were only 
shown the true selling price. This change was made to 
reduce recognition compared to Experiment 1. Lastly, 
after rating paintings as new during the test phase, 
rather than proceeding to the next painting, participants 
were prompted for their rating of how much they liked 
the painting and for the value they thought the painting 
would be worth. This change was made to disincentivize 
participants from selecting “New” more often to complete 
the study faster. As in Experiment 1, participants com
pleted an informed consent form by checking a box indi
cating their agreement to participate. Participants then 
reported demographic information before receiving the 
same instructions as in Experiment 1. Next, participants 
completed three study phases, each followed by a 5-min 
simple arithmetic distraction phase and a test phase. 
Finally, participants reported whether they had completed 
the study or a similar study before, whether they were 
doing anything else during the study, and whether they 
had experienced any disruptions to the study (e.g., 
having to reload a page or having to restart the study).

Data analysis
Consistent with Experiment 1, we examined overall recog
nition accuracy, remember and know responses, partici
pants’ memory of assigned value, and the influence of 
reward prediction errors on recognition accuracy using a 
similar logisitc mixed effects model as described in Exper
iment 1 with Bonferroni corrections used for post-hoc 
tests.

Results

Overall recognition accuracy
As in Experiment 1, recognition accuracy was calculated as 
the average number of correct old/new responses (i.e., 
including hits and correct rejections). Across all partici
pants and items presented, there were 51.9% of old 
responses and 48.1% of new responses. The overall rate 
of recognition accuracy was 73.45%, which was lower 
than that of Experiment 1, likely due to the use of 
different materials. The overall false alarm rate was 
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28.24% out of the possible false alarms. Items that 
appeared as lures during testing but were not shown 
during study did not receive value predictions and were 
not associated with an assigned value. Thus, in all analyses 
that include predicted or assigned value, only items that 
were shown at study are included. For only items that 
were shown at study (i.e., including hits and misses), the 
rate of recognition accuracy was 75.24%. Average recog
nition accuracy is shown in Figure 2B, and all means and 
standard deviations are included in Table 1. Additionally, 
participants predicted 45.13% of items to be of low value 
and 54.87% of items to be of high value. The cell sizes 
for all conditions are shown in Table 1.

For overall recognition accuracy, the ICC for the partici
pant random intercept effect was 0.15 and for the item 
random intercept effect was 0.06. Predicted value (OR =  
1.17, SE = 0.06, 95% CI: 1.04–1.31, p = .008) was a significant 
predictor of recognition accuracy. There was greater rec
ognition accuracy for items with high assigned value 
than items with low assigned value. List was also a signifi
cant predictor, X2(2) = 21.93, p < .001. Items on List 2 (OR =  
0.78, SE = 0.05, z = −3.67, p < .001) and List 3 (OR = 0.74, SE  
= 0.05, z = −4.29, p < .001) had greater recognition accu
racy compared to items on List 1. There was no significant 
difference in accuracy between List 2 and List 3 (OR = 0.96, 
SE = 0.07, z = −0.65, p > .999). Unlike in Experiment 1, we 
did not find that assigned value was a significant predictor 
of recognition accuracy (OR = 1.08, SE = 0.06, 95% CI: 0.97– 
11.21, z = 1.33, p = .183), and there was no significant inter
action between predicted value and assigned value (OR =  
0.97, SE = 0.11, 95% CI: 0.78–1.22, z = −0.25, p = .803). 
Additionally, there was no significant interaction 
between list and predicted value, X2(2) = 2.88, p = .237, 
nor between list and assigned value, X2(2) = 2.29, p  
= .319. Lastly, the three-way interaction was not signifi
cant, X2(2) = 1.91, p = .386.

Results on recognition confidence can be found in the 
Supplemental Materials with means and standard devi
ations reported in Table S1.

Remember-know responses
The average proportion of remember responses is 

depicted in Figure 3B, and all means and standard devi
ations are included in Table 1. The ICC for the participant 
random intercept effect was 0.33 and for the item 
random intercept effect was 0.07 for likelihood of remem
ber responses.

The analysis revealed that predicted value was a signifi
cant predictor (OR = 1.19, SE = 0.07, 95% CI: 1.04–1.35, z =  
2.62, p = .009), such that there was greater likelihood of 
remember responses for items with high predicted value 
than items with low predicted value. List was also a signifi
cant predictor, X2(2) = 61.37, p < .001. Assigned value was 
not a significant predictor of remember responses (OR =  
1.13, SE = 0.06, 95% CI: 1.00–1.28, z = 1.90, p = .058). Fur
thermore, we found a significant interaction between pre
dicted value and list, X2(2) = 6.56, p = .038. There were no 

significant differences in remember responses between 
items with low and high predicted value on List 1 (OR =  
1.06, SE = 0.11, 95% CI: 1.85–1.31, z = 0.49, p = 0.63) or on 
List 2 (OR = 1.06, SE = 0.11, 95% CI: 0.85–1.31, z = 0.50, p  
= 0.62). On List 3, participants reported higher remember 
responses for items with high predicted value compared 
to items with low predicted value (OR = 1.50, SE = 0.11, 
95% CI: 1.20–1.87, z = 3.57, p < .001). Additionally, there 
was a significant three-way interaction between assigned 
value, predicted value, and list, X2(2) = 9.79, p = .007. The 
interaction between assigned value and predicted value 
was significant in List 1, X2(1) = 4.24, p = .04, but post-hoc 
test showed that none of the interactions were significant 
after correcting for multiple comparison (all Bonferroni ps  
> 0.50). The interaction was not significant in List 2, X2(1) =  
1.74, p = .19. However, the interaction was revealed to be 
significant in List 3, X2(1) = 4.52, p = .03. Specifically, for 
items with low assigned value, items with high predicted 
value received greater remember responses than items 
with low predicted value (OR = 0.50, SE = 0.09, z = −4.03, 
p < .001). For items with high assigned value, there were 
no significant differences in remember responses (OR =  
0.83, SE = 0.14, z = −1.11, p > .99). No other interactions in 
the model were significant (all ps > .260).

We also examined participants’ “Know” or K responses. 
Again, the proportion of R responses and K responses were 
not perfectly proportional because of the inclusion of the 
“Guess” response. Therefore, we examine the two out
comes separately. The means and standard deviations of 
the proportion of know responses are included in Table 
1. The average proportion of know responses is depicted 
in Figure 4B. We conducted a similar Generalized Linear 
Model as the previous with the outcome being likelihood 
of responding “know” for each item. The ICC for the partici
pant random intercept effect was 0.24, while for the item 
random intercept effect, it was 0.01. The analysis revealed 
that list was a significant predictor of know responses, 
X2(2) = 25.83, p < .001. There was a greater likelihood of 
know responses on List 1 compared to List 2 (OR = 1.31, 
SE = 0.11, z = 3.36, p = .002) and List 3 (OR = 1.51, SE =  
0.12, z = 4.96, p < .001), but there was no difference 
between List 2 and List 3 (OR = 1.15, SE = 0.09, z = 1.66, p  
= .289). Assigned value (OR = 0.96, SE = 0.06, 95% CI: 
0.84–1.10, z = −0.59, p = .56) and predicted value (OR =  
0.98, SE = 0.07, 95% CI: 0.86–1.12, z = −0.34, p = .736) 
were not significant predictors of know responses. No 
interactions in the model were significant (all ps > .071).

Memory for assigned value
As in Experiment 1, memory for the exact price of each 
item was overall fairly low (M = 0.08), so we examined 
memory for price in a categorical way, as measured by 
whether participants’ memory for the price fell into the 
“low value” or “high value” category. On this categorical 
measure, responses were scored as correct if their 
memory for the price was within the correct value category 
(i.e., “low value” = less than or equal to $25,000; “high 
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value” = greater than or equal to $100,000). Means and 
standard deviations for this measure are shown in Table 2.

The analysis predicting the likelihood of correctly 
remembering each item’s value category as a function of 
predicted value, assigned value, and list had an ICC of 
0.06 for the participant random intercept effect, and an 
ICC of 0.01 for the item random intercept effect. The analy
sis revealed that neither predicted value (OR = 1.04, SE =  
0.05, 95% CI: 0.94–1.16, z = 0.80, p = .423) nor assigned 
value (OR = 1.06, SE = 0.05, 95% CI: 0.95–1.17, z = 1.05, p  
= .294), were significant predictors. There was, however, 
a significant interaction between predicted and assigned 
value (OR = 2.16, SE = 0.11, 95% CI: 1.76–2.66, z = 7.27, p  
< .001), such that for items with low assigned value, categ
orical value memory was higher for items with low pre
dicted value than items with high predicted value (OR =  
1.41, SE = 0.11, z = 4.51, p < .001). For items with high 
assigned value, categorical value memory was higher for 
items with low predicted value than items with high pre
dicted value (OR = 0.65, SE = 0.05, z = −5.69, p < .001). In 
other words, when the assigned value of items was high, 
memory for the value was improved only if participants 
had predicted the value to be high.

List was not a significant predictor, X2(2) = 3.31, p = .192. 
However, the interaction between assigned value and list 
was significant, X2(2) = 16.95, p < .001. No other inter
actions in the model were significant (all ps > .132).

Results on confidence in assigned value memory can be 
found in the Supplemental Materials with means and stan
dard deviations reported in Table S2.

Reward prediction errors
To examine the effect of RPEs on recognition memory, we 
conducted a logistic mixed effects model as described 
earlier. The ICC for the participant random intercept 
effect was 0.15 and for the item random intercept effect 
was 0.07. Recognition accuracy across different types of 
prediction error is depicted in Figure 5B. Prediction error 
was not a significant predictor of recognition accuracy, 
X2(2) = 0.80, p = .671. However, list was a significant predic
tor, X2(2) = 23.28, p < .001, which aligned with the GLM on 
overall recognition accuracy reported above. Lastly, the 
interaction between prediction errors and list was not sig
nificant, X2(4) = 2.23, p = .694. Thus, in Experiment 2, we 
did not find differences in recognition accuracy as a func
tion of participants’ prediction errors.

RPEs and remember and know responses
Next, we analysed the likelihood of remember and know 
responses as a function of RPEs and List, as described in 
the analysis plan above. For remember responses, the 
ICC for the participant random intercept effect was 0.34 
and for the item random intercept effect was 0.07. The 
model revealed no significant effect of prediction error, 
X2(2) = 0.23, p = .889. There was a significant effect of list, 
X2(2) = 73.53, p < .001, which aligned with the results of 
the previously reported analysis. Lastly, there was a 

significant interaction between list and prediction errors, 
X2(4) = 11.35, p = .023, such that, examining simple 
effects, the likelihood of remember responses was higher 
on List 1 when there was no prediction error than when 
there was a positive prediction error (OR = 0.74, SE = 0.14, 
z = −2.13, p = .033), but not when there was a negative 
prediction error (OR = 0.80, SE = 0.13, z = −1.66, p = .097). 
On List 2, neither positive (OR = 1.20, SE = 0.14, z = 1.33, 
p = .184) nor negative (OR = 1.03, SE = 0.13, z = 0.26, p  
= .799) prediction errors resulted in different recognition 
accuracy from no prediction error. On List 3, positive pre
diction errors did not differ from no prediction error (OR  
= 1.07, SE = 0.14, z = 0.50, p = 618), but negative prediction 
errors resulted in more remember responses than no pre
diction error (OR = 1.31, SE = 0.13, z = 2.05, p = .040). Taken 
together, no RPE resulted in greater likelihood of remem
ber responses on List 1, and by List 3, negative prediction 
errors were more predictive of remember responses, 
though these effects were small.

Next, looking at know responses, the ICC for the partici
pant random intercept effect was 0.24, while for the item 
random intercept effect, it was 0.01. The model revealed 
no significant effect of prediction error on know responses, 
X2(2) = 0.05, p = .976, but there was a significant effect of 
list, X2(2) = 32.61, p < .001, which aligned with previous 
results on know responses. The interaction between list 
and prediction error was not significant, X2(4) = 5.20, p  
= .267.

Discussion

In Experiment 2, we replicated the finding that predicted 
value was a significant influence on overall recognition 
accuracy. While we did not find an interaction between 
predicted and assigned value, the results showed that 
predicted value was a stronger influence on memory 
than assigned value, suggesting that participants may 
have focused more on predicted value or that it was 
difficult to overwrite the predicted value once learned. 
This general pattern is consistent with the results of 
Experiment 1.

Additionally, we found evidence that the likelihood of 
remember responses was higher for high predicted value 
items than low predicted value items. This finding repli
cates prior work (Hennessee et al., 2017) and was likely 
detectable in Experiment 2 because of the reduced 
overall recognition rate. It also extends prior work by 
showing that making a prediction of an item can further 
influence the quality of memory processes, either at 
encoding or retrieval. Specifically, predicting an item to 
be of high value may lead to similar processes as simply 
learning that an item is worth a high value. This presents 
an important direction for future work on value-directed 
remembering. However, the finding that items with high 
assigned value had greater proportion of remember 
responses was not replicated. Furthermore, results 
showed that the main effect of predicted value and the 
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interaction effect between predicted value and assigned 
value was only significant in List 3, suggesting that it 
may take more experience with the task for participants’ 
recollection performance to be sensitive to value.

Lastly, we did not replicate the finding that prediction 
errors led to improvements in memory. It is possible that 
this finding is simply not as reliable or that some aspect 
of the materials (e.g., greater interference) could 
influence the extent to which prediction errors influence 
memory performance.

General discussion

The present study aimed to examine the effects of pre
dicted value and experimenter-assigned assigned value, 
as well as the effects of reward prediction errors, on recog
nition memory. We utilised a more naturalistic value- 
directed remembering paradigm using art pieces, which 
have varying values, to explore our research questions. 
Participants were tested on their recognition of the art 
pieces over multiple study-tests lists, which allowed us to 
assess differences in recollection and familiarity, as well 
as changes in these processes with task experience. In 
Experiment 1, participants studied various art pieces, 
including sculptures, paintings, and mixed media art, 
whereas in Experiment 2, participants studied landscape 
paintings from Kornell and Bjork (2008). We found evi
dence across both experiments that recognition memory 
was better for items predicted to be of high value than 
for items predicted to be of low value. This finding 
extends those from prior VDR studies, which have found 
memory selectivity for information judged to be more 
valuable (McGillivray & Castel, 2017; Murphy & Castel, 
2021) and that we are told is more valuable (Castel et al., 
2002; Middlebrooks et al., 2017; Robison & Unsworth, 
2017; Spaniol et al., 2014).

In terms of memory updating, our findings suggested 
that initial value information may be difficult to overwrite. 
In Experiment 1, we found that when initial value judg
ments were low, assigned value was prioritised, whereas 
when initial value judgments were high, assigned value 
did not significantly influence recognition memory. 
However, in Experiment 2, we did not find this pattern. 
Rather, only high predicted value items were prioritised 
in memory. The study, by design, incentivized participants 
to update their memory of predicted value with the 
assigned value to accumulate points, as this is how they 
were to earn their point reward. We can only speculate 
about reasons why memory updating was less successful 
in Experiment 2, but it is possible that there was greater 
interference, given that the stimuli were more homo
geneous (a choice made to reduce recognition rates). 
Taken together, the findings from both experiments 
suggest that, in this experimental design, making a value 
judgment may have influenced the ability to update 
memory when learning assigned value later. This lends 
some support for the idea that an initial value judgment 

may be processed somewhat automatically, reducing the 
ability to update memory, similar to that of a directed for
getting paradigm (see Hennessee et al., 2019). Future work 
will be required to make stronger claims concerning the 
automatic influence of predicted value on memory.

There are a few potential explanations for the finding 
that predicted value was a more reliable predictor of rec
ognition memory than experimenter assigned value. 
First, it could reflect that our own predictions may be 
deemed more important or motivating than an arbitrary 
assigned value. Research shows that when participants 
make judgments of importance for to-be-learned infor
mation, they tend to remember the higher importance 
items at a higher rate (Murphy & Castel, 2021). In the 
present study, our design lends itself to participants 
making an evaluative judgment about the value of 
different art, which could act as a subjective rating of 
importance or value metric that is especially motivating. 
Alternatively, it could suggest that the processing of the 
initial value information is difficult to overwrite. More 
specifically, past work has found that when participants 
are asked to forget items of either high or low value, 
those with high value are remembered at a higher rate 
than those with low value on a later recognition test 
(Hennessee et al., 2019). This work suggests that proces
sing high value items (regardless of where the value 
information is from) may lead to persistent memory 
that is not easily forgotten, providing further support 
for value (even in predicted form) having more auto
matic effects on memory. However, it is important to 
note that in our study, there is no condition in which 
the assigned value is shown before participants make 
their own value judgment (as this would likely 
influence their judgments). Therefore, we cannot disen
tangle the influence of value more broadly (i.e., which 
value does a participant learn first?) from that of the 
source of the value (i.e., participants’ judgments vs. 
experimenter assigned).

One goal of the current research was also to determine 
how predicted and assigned value would influence the 
quality of memory. In terms of recollection and familiarity 
processes as a function of predicted and assigned value, 
Experiment 1 showed that higher assigned value was 
associated with more recollection and fewer familiarity 
responses, and in Experiment 2, assigned value had a mar
ginal effect on recollective processes, while higher pre
dicted value was associated with more recollection. 
However, value did not predict familiarity responses in 
Experiment 2. These findings show that value, either pre
dicted or assigned value, may have a more automatic 
influence on memory, as value is thought to improve 
detailed episodic memory more automatically (Elliott 
et al., 2020; Hennessee et al., 2017). Specifically, dopamin
ergic processes are thought to drive these more automatic 
influences of value on memory (Elliott et al., 2022; Shige
mune et al., 2014; Wittmann et al., 2005; Wolosin et al., 
2012), and our results lend support for this hypothesis. It 
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is also worth noting that we predicted that the inclusion of 
multiple study-test lists with feedback may encourage 
more strategic processing of value (and thus greater 
influence of value on familiarity as well as recollection) 
across lists. In Experiment 1, we did not find interactions 
with the list variable, but in Experiment 2, the three-way 
interaction between assigned value, predicted value, and 
list was significant. This interaction, though difficult to 
interpret, suggested that early in the task, alignment of 
predicted and assigned value resulted in more recollective 
experiences. However, later in the task, recollective 
responses were greatest when either form of value was 
high. Thus, participants may have shifted their strategy 
throughout the task, prioritising the goals of the task 
and overriding some automatic influences on recollection.

Another goal of the research was to examine how 
reward prediction errors play a role in recognition. 
Results from Experiment 1 revealed that positive reward 
prediction errors led to better recognition than no predic
tion error, while negative reward prediction errors also led 
to numerically higher recognition rates, but did not reach 
statistical significance while accounting for multiple com
parisons. This result is in line with some prior work 
(Rouhani et al., 2018, 2020) and supports the idea that 
RPEs present at reward outcome may have an unsigned 
effect on memory (Rouhani & Niv, 2021; Stanek et al., 
2019), though future work will need to confirm these 
effects. We did not find an effect of RPEs on memory in 
Experiment 2. While it is not entirely clear why participants 
in Experiment 2 could be struggling to update their 
memory with the assigned value, again there could be 
differences due to the materials, in that stimuli in Exper
iment 1 were more diverse, whereas in Experiment 2, 
stimuli were more similar. We did find that participants 
predicted a greater proportion of items to be of high 
value in Experiment 2, whereas value predictions were 
more balanced in Experiment 1, which could have 
impacted the ability to detect differences.

We also examined the extent to which RPEs influence 
the quality and depth of memory by examining differences 
in remember and know responses. In Experiment 1, the 
effects of prediction errors on remember and know 
responses did not reach statistical significance, but ana
lyses of the marginal effects suggested that positive pre
diction errors may result in more recollective experiences 
and fewer familiarity experiences. These potential effects 
suggest that positive prediction errors may have resulted 
in more automatic processing of value, with specific 
benefits for recollection at the expense of familiarity. 
However, in Experiment 2, we found that the effect of 
RPEs on recollective experiences changed across lists, 
with lack of prediction errors leading to the most remem
ber responses on List 1 and negative prediction errors 
being more influential on List 3. The effects in Experiment 
2 suggest that participants may have adjusted their strat
egy throughout the task, leading to inconsistencies in 
which type of prediction error influences recollection. 

Taken together, RPEs likely do influence recollection and 
familiarity processes, but future research will need to 
confirm the nature of these effects.

Our study has provided several important insights into 
how value influences memory. However, there are several 
limitations that are important to discuss. One limitation is 
our measurement of recognition performance in our study, 
where we were only able to measure how well participants 
identified art pieces that they previously studied as old. We 
were unable to consider false alarms as a function of our 
variables, because we did not collect participants’ pre
dicted value for these art pieces, and they had no assigned 
value. Therefore, we were unable to calculate recognition 
performance using the signal detection theory framework 
that is more common in other literature on recognition 
memory. However, our approach was in line with other 
work (e.g., Rouhani et al., 2018), and false alarms were 
overall fairly low (MExp1 = .07; MExp2 = .28). Another limit
ation is that our RPE measure was categorical. Predicted 
value was measured as a categorical variable in our 
study. As a result, we were unable to examine and con
clude how the magnitude of prediction error (i.e., how 
far off the participants’ predictions were from the assigned 
value) impacts memory performance. Future studies could 
seek to examine this by measuring predicted value as a 
numeric variable.

Overall, the current study has contributed to research 
on value-directed remembering. It reveals that when 
making a prediction about the value of to-be-learned 
information, memory selectivity is driven by these predic
tions. Furthermore, it may be difficult to update memory 
when learning an assigned or assigned value after 
making a prediction. Future studies are needed to repli
cate this finding and clarify the specific mechanisms 
underlying this phenomenon. This study also contributes 
to the literature on VDR, examining the influence of value 
on the type and depth of encoding and retrieval pro
cesses to show that we engage in deeper encoding pro
cesses for high-value stimuli compared to low-value 
stimuli, regardless of whether the value is participant 
assigned or experimenter assigned. Taken together, 
these findings suggest that evaluative judgments of 
value may influence the way we remember information 
and its assigned value, which has implications for 
theory on value-directed remembering and also everyday 
settings in which remembering value is important to our 
goals.
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Appendix A

Terms Definitions provided to participants

Old Art piece that was previously presented
New Art piece that was not previously presented
Remember You should choose “Remember” if you consciously recollect 

seeing the item in the previous list. If the art piece brings 
back to mind a particular association or thought that you 
had during the study, or something about its appearance or 
position (i.e., what came before or after the art piece), then 
you can choose “Remember”. 
For example, if you see someone on the street, you 
recognise their face and remember talking to the person at 
the party the previous night.

Know You should choose “Know” if you know the item was one you 
studied, but you cannot recollect any details associated 
with seeing it before. 
For example, if you see someone on the street, you know 
you recognise them because of strong feelings of 
familiarity, but you have no recollection of seeing this 
person before.

Guess You should choose “Guess” if you think you may have seen 
the art in the gallery presentation but you do not 
remember explicitly seeing it. 
For example, if you see someone on the street, they may be 
wearing a shirt that you have seen before so you guessed 
that you have met them before.
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